© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

HAMERSLEY IRON MARANDOO SITE

Evaluation of FTC Combustion Catalyst as a means of reducing Geenhouse Gas Emissions and diesel fuel costs in mobile mining equipment.

August, 2003

Prepared by:

Fuel Technology Pty Ltd 3/18 Parry St FREMANTLE WA 6160 (PO Box 1271)

Tel: (08) 9335 6899 Fax: (08) 9430 5403 E-mail fueltech@iinet.net.au

ACN 100 293 490

CONTENTS

Executive Summary	Page 1
Background	Page 2
Introduction	Page 2
Test Method	Page 3
Photographs	Page 4
Test Results	Page 6
Bosch Smoke Measurements	Page 7
Specific Fuel Consumption	Page 7
Greenhouse Gas Reduction	Page 11
Conclusion	Page 11

Appendix

"A"	Carbon Balance Printouts
"В"	Bosch Smoke Results
<i>"C"</i>	Raw Data

$E_{xecutive}S_{ummary}$

The FTC/FPC Combustion Catalysts manufactured and marketed by Fuel Technology have proven in laboratory and field trials to significantly reduce fuel consumption under comparable load conditions and to also substantially reduce carbon emissions.

Following meetings with Hamersley Iron's Performance Engineer – Mobile Equipment, James Campbell, it was agreed that a fuel efficiency study should be conducted on selected haul trucks at the Marandoo site employing two International Engineering test procedures namely "Specific Fuel Consumption" (SFC) and "Carbon Mass Balance" (CMB). This trial commenced on 13th May 2003 and was completed on 31st July 2003.

The net average efficiency gain (reduction in fuel consumption) measured by the CMB and SFC test methods was **5.3%**.

BACKGROUND

The FTC Combustion Catalyst is the only fuel chemical yet proven by the world's leading testing authority, Southwest Research Institute (Texas) to improve fuel efficiency in an as new 2500HP diesel engine operating at its most efficient state. SwRI also determined that FTC does not alter the physical or chemical properties of diesel fuel.

SwRI also determined, using the Caterpillar 1G2 Test (ASTM 509A) that there are no detrimental effects that could cause increased wear or deposit problems following catalyst treatment of fuel.

These findings have been verified by countless field studies in diverse applications, which have confirmed efficiency benefits for mine mobile equipment. Maintenance benefits documented include reduced wear metal profiles in lubricating oil and reduced soot. Combustion and exhaust spaces become essentially free of any hard carbon with continuous catalyst use.

FTC's action in producing fuel efficiency gains is to promote a faster fuel burn which releases the fuel's energy more efficiently. That is, a larger portion of the fuel burn occurs when the piston is closer to top dead centre.

INTRODUCTION

Equipment provided for this fuel efficiency evaluation comprised of three Unit Rig 4000 series trucks, No's 34, 35 and 42. Trucks 34 and 35 were selected as FTC treated test trucks and are powered by MTU engines. Truck 42 was untreated and used as a control to identify any outside variables should they exist and is powered by a Cummins engine.

Fuel Technology Pty Ltd supplied, on loan, an air operated FTC catalyst-metering system which was calibrated allowing fuel to be FTC treated at time of each test truck refuelling.

Trucks 34 and 35 were selected for the SFC test, which were conducted over a circuit of 2.2 km, marked out on a haul ramp in an area where no changes to the profile would occur over the test period. The CMB, which is a static test, was conducted on all three test trucks adjacent to the refuelling bay.

Test Methods

<u>The Carbon Mass Balance (CMB)</u> is a procedure whereby the mass of carbon in the exhaust is calculated as a measure of the fuel being burned. The elements measured in this test include the exhaust gas composition, (HC,CO,CO₂ and O₂) temperature and the gas flow rate calculated from the differential pressure and exhaust stack cross sectional area. This is an engineering standard test (AS2077-1982) and has been used by the US EPA since 1974 as the "Standard Federal Test Procedure" for fuel economy and emission testing. (*Horiba four gas analyser photograph No.* 1)

Each test truck was driven to the refuelling area where CMB test probe was positioned in the exhausts independently. With the assistance of on site personnel the test truck engine was run at high idle while emissions were recorded. Exhaust smoke samples via "Bosch Smoke" testing equipment were also recorded at this time.

<u>The Specific Fuel Consumption (SFC)</u> test procedure requires measurement of the mass of fuel consumed related to the work performed in hauling a measured load of ore over a defined distance.

A start point was selected on a reproducible section of the ramp haul and windrow markers marked. A point near the crusher was defined as the end point of the haul route. The distance between these points was measured at 2.2km.

MacNaught Model M10 flow transducers complete with thermocouple probes were connected to the truck's fuel tank outlet and return fuel pipelines (*Photograph No. 2*).

These transducers, which have been calibrated to \pm 0.25% by a NATA certified laboratory, are connected to a KEP Minitrol Totaliser mounted in the truck cab. The thermocouple probes are connected to a dual reading digital thermometer, also mounted in the cab workstation (*Photograph No. 3*).

As the temperature of the fuel can vary relative to ambient temperature changes as well as increase significantly during a working shift, constant temperature monitoring is required to enable calculation of the mass of fuel consumed for each haul.

Prior to the test commencing a fuel sample is drawn and the density measured at the observed temperature and then corrected to the industry standard of 15° C by use of the Institute of Petroleum Density Correction Table, Volume VIII, Table 53B.

Following loading of the truck at each cycle, the truck was driven to the pit ramp marker and stopped. The Minitrol totaliser and stopwatch are zeroed. At the signal "GO" the driver accelerates and the test engineer activates the totaliser and stopwatch. The truck is driven at full throttle to avoid driver variables over the haul route. Fuel temperatures are recorded at the mid haul point. Upon arrival at the end marker the stopwatch and Minitrol totaliser readings are recorded.

Test Equipment

Photograph No. 1

Comment [FT1]:

Photograph No. 2

Photograph No. 3

Test Results

A summary of the CMB fuel efficiency results achieved in this test program are provided in the following table.

TABLE 1

Unit No.	Untreated 13/5/03 Carbon flow g/s	Treated 31/7/03 Carbon flow g/s	Variation
34 Top Exhaust	5.282	4.906	
34 Bottom Exhaust	5.236	4.905	
TOTAL g/s	10.518	9.811	-6.7%
35 Top Exhaust	3.919	3.727	
35 Bottom Exhaust	3.533	3.354	
TOTAL g/s	7.452	7.081	-5.0%
42 Top Exhaust	2 824	2 820	
42 TOP Exhaust	3.824	3.820	
42 Bottom Exhaust	3.852	3.881	
TOTAL g/s	7.676	7.701	0.3%
AVERAGE	8.985	8.446	- 6%
EXCLUDING # 42			

Carbon Balance Fuel Consumption Test Results

The CMB test procedure provides confirmation that addition of the Catalyst to the fuel supply has resulted in a reduction in carbon flow (fuel consumption) of 6% excluding control truck 42. Tests conducted on truck 42 indicate that during these tests no outside variables were measured. The computer printouts of results and raw data sheets are contained in the *Appendix*.

${\it B}$ osch ${\it S}$ moke ${\it M}$ easurements

A Bosch smoke test is also undertaken during conduct of the CMB test and the results are shown in the following table. Smoke patches in *Appendix*.

TABLE 2

Bosch Smoke Results

Unit No.	Untreated 13/5/03	Treated 31/7/03	Variation
34 Top Exhaust	1.4	0.8	
34 Bottom Exhaust	1.0	0.9	
AVERAGE	1.2	0.85	- 29%
35 Top Exhaust	0.5	0.3	
35 Bottom Exhaust	0.8	0.4	
AVERAGE	0.65	0.35	-46 %
42 Top Exhaust	0.2	0.2	
42 Bottom Exhaust	0.2	0.2	
AVERAGE	0.2	0.2	N/C
Average	0.925	0.6	-35%
Excluding # 42			

Specific Fuel Consumption

Specific Fuel Consumption tests conducted on trucks 34 and 35 in a working environment provided fuel efficiency gains of **5.5%** and **3.7%** respectively averaging **4.6%** when SAE recommended formula of Tonne/km per kg of fuel is applied. Computer printouts follow in tables 3 and 4. Graphical representation is graphs 1 and 2. Work sheets in *Appendix*.

Test Truck 34-Table 3

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

Customer:	Hamersley Iron Marandoo	Engine Hrs	47920
Date:	15/05/2003	Amb, Temp, Start deg, C	25.4
Truck No;	34	Amb, Temp, Finish deg, C	17.9
Make/Model	Unit Rig Series 4000	Circuit Distance Km	2.2
		Unit Tare weight	157

0.829 28.5 Corrected 0.838 15	Fuel Sample	Density	Temp Deg C
Corrected 0.838 15		0.829	28.5
	Corrected	0.838	15

UNTREATED

Run No	Time	Load Tonnes	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel T	èmp	Der	isity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne/km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1	6.30	200	5	- 28	5.47	76.27	47.14	29.13	33.7	47.5	0.825	0.816	62.95	38.44	24.50	0.0686	32,0533
2	6.50	200	5	32	5.53	77.44	47.85	29.59	34.0	47.8	0.825	0.815	63.90	39.01	24.88	0.0697	31.5629
3	7.10	200	5	41	5.68	79.72	49.17	30.55	34.3	48.1	0.825	0.815	65.76	40.08	25.68	0.0719	30.5811
4	7.25	200	5	33	5.55	78.38	48.35	30.03	34.6	48.4	0.825	0.815	64.63	39.40	25.23	0.0707	31,1275
5	7.45	200	5	05	5.08	82.27	50.54	31.73	34.7	48.6	0.825	0.815	67.84	41.17	26.66	0.0747	29.4544
6	8.00	200	5	42	5.70	79.72	49.17	30.55	35.0	48.0	0.824	0.815	65.72	40.08	25.64	0.0718	30.6345
7	8.20	200	5	52	5.87	82.77	50.71	32.06	35.3	48.6	0.824	0.815	68.21	41.31	26.90	0.0753	29.1999
8	8.40	200	5	- 36	5.60	78.16	48.35	29.81	35.5	48.6	0.824	0.815	64.40	39.39	25.01	0.0701	31,3996
9	9.15	200	5	41	5.68	79.66	49.06	30.60	35.9	48.6	0.824	0.815	65.62	39.97	25.65	0.0718	30.6238
10	9.30	200	5	- 38	5.63	78.77	48.62	30.15	36.1	48.2	0.824	0.815	64.87	39.63	25.25	0.0707	31.1054
11	9.50	200	5	- 29	5.48	76.61	47.36	29.25	36.0	48.7	0.824	0.815	63.10	38.58	24.52	0.0687	32,0317
Mean		200			5.57			30.31							25.448	0.0713	30.8885
Std Dev		0			0.1981			0.9309							0.7785	0.0022	0.9285

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

Truck No:	34	Engine Hrs	49141	Fuel Sample	Density	Temp Deg C
Date:	30/07/2003	Amb; Temp; Start deg; C	25.3		0.824	31.2
		Amb; Temp; Finish deg; C	24.5	Corrected	0.835	15

TREATED

Run No	Time	Load Tonnes	Haul	Time	Haul Time	Fuel	(L1)	Fuel (Lt)	Fuel T	èmp	Der	sity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne/km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1	1.00	200	5	13	5.22	71.49	43.13	28.36	25.1	41.8	0.828	0.817	59.22	35.22	24.01	0.0672	32.7159
2	1.20	200	5	29	5.48	75.55	45.93	29.62	25.8	43.4	0.828	0.815	62.55	37.45	25.10	0.0703	31,2952
3	1.35	200	5	19	5.32	72.72	44.56	28.16	26.2	43.8	0.828	0.815	60.18	36.32	23.86	0.0668	32,9140
4	1.50	200	5	23	5.38	74.33	45.60	28.73	26.9	44.2	0.827	0.815	61.48	37.15	24.32	0.0681	32,2896
5	2.05	200	5	22	5.37	73.38	44.83	28.55	27.3	44.1	0.827	0.815	60.67	36.53	24.14	0.0676	32,537
6	2.20	200	5	16	5.27	71.61	43.95	27.66	27.7	44.4	0.827	0.815	59.19	35.81	23.38	0.0655	33.5934
7	2.40	200	5	21	5.35	73.49	44.99	28.50	28.4	44.6	0.826	0.815	60.70	36.65	24.05	0.0674	32.6517
8	2.50	200	5	25	5.42	74.44	45.72	28.72	29.3	44.9	0.825	0.814	61.44	37.23	24.21	0.0678	32,437
9	3.05	200	5	- 28	5.47	75.44	46.64	28.80	29.8	45.3	0.825	0.814	62.24	37.97	24.27	0.0680	32,363
10	3.30	200	5	16	5.27	71.99	44.17	27.82	30.6	46.0	0.825	0.814	59.36	35.94	23.42	0.0656	33.5368
11	3.45	200	5	- 26	5.43	74.94	45.82	29.12	31.4	46.6	0.824	0.813	61.74	37.26	24.49	0.0686	32.0744
Mean		200			5.36			28.55							24.113	0.0675	32,5826
Std Dev		0			0.0870			0.5576							0.4778	0.0013	0.6432
												-					
%CHAN	GE:	Load Tonnes			Haul Time			Fuel (Lt)							Fuel (kg)	Fuel (kg)	Tonne/km
Treated	Baseline				Mins			Consumed							Consumed	Per Tonne	Per kg Fuel
Bas	eline	0.00%			-3.78%			-5.82%							-5.24%	-5.2%	5.5%

Test Truck 35-Table 4

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

Customer:	Hamersley Iron Marandoo	Engine Hrs	49415	Fuel Sample	Density	Temp Deg C
Date:	14/05/2003	Amb; Temp; Start deg; C	27.3		0.829	28.5
Truck No;	35	Amb, Temp, Finish deg, C	20.4	Corrected	0.838	15
Make/Model	Unit Rig Series 4000	Circuit Distance Km	2.2			
		Unit Tare weight	157			

UNTREATED

Run No	Time	Load Tonne	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel T	emp	Der	sity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne.km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1	3.40	200	5	15	5.25	78.83	52.85	25.98	38.9	58.8	0.822	0.808	64.77	42.68	22.09	0.0619	35.5540
2	4.00	200	5	39	5.65	85.22	56.53	28.69	39.6	58.2	0.821	0.808	69.97	45.67	24.30	0.0681	32,3163
3	4.25	200	5	26	5.43	81.77	54.56	27.21	39.7	59.4	0.821	0.807	67.13	44.04	23.10	0.0647	34.0032
4	4.45	200	5	23	5.38	80.44	53.73	26.71	40.4	58.9	0.821	0.807	66.00	43.38	22.62	0.0634	34,7224
5	5.05	200	5	21	5.35	80.33	53.73	26.60	40.6	60.2	0.820	0.807	65.90	43.33	22.57	0.0632	34,7992
6	5.25	200	5	31	5.52	82.83	55.10	27.73	41.0	59.2	0.820	0.807	67.93	44.48	23.45	0.0657	33,4894
7	6.40	200	5	14	5.23	77.72	52.08	25.64	39.6	56.9	0.821	0.809	63.82	42.13	21.69	0.0608	36.2129
8	6.55	200	5	35	5.58	83.94	55.71	28.23	39.8	58.6	0.821	0.808	68.91	45.00	23.92	0.0670	32.8375
9	7.15	200	5	30	5.50	82.38	54.83	27.55	40.0	58.7	0.821	0.808	67.62	44.28	23.34	0.0654	33.6550
10	7.35	200	5	32	. 5.53	82.72	55.10	27.62	40.3	58.9	0.821	0.807	67.88	44.49	23.39	0.0655	33.5752
Mean		200			5.44			27.20							23.047	0.0646	34,1165
Std Dev		0			0.1386			0.9651							0.8082	0.0023	1.2057
C.V		0.0%	, ,		2.5%			3.5%							3.5%	3.5%	3.5%

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

Truck No.	35	Engine Hrs	50677	Fuel Sample	Density	Temp Deg C
Date:	31/07/2003	Amb, Temp, Start deg, C			0.816	41.3
		Amb, Temp; Finish deg; C	24.9	Corrected	0.835	15

TREATED																	
Run No	Time	oad Tonnes Haul Time		Time	Haul Time Fuel (Lt)		Fuel (Lt)	Fuel Temp		Density		Fuel (kg)		Fuel (kg)	Fuel (kg)	Tonne.km	
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1	10.54	200	5	17	5.28	79.66	52.30	27.36	29.0	48.8	0.825	0.811	65.70	42.40	23.30	0.0653	33.7140
2	11.14	200	5	13	5.22	77.27	50.71	26.56	30.2	50.9	0.824	0.809	63.66	41.03	22,62	0.0634	34,7207
3	11.30	200	5	06	5.10	75.16	49.83	25.33	31.4	54.1	0.823	0.807	61.86	40.21	21.65	0.0606	36.2791
4	11.47	200	5	- 04	5.07	75.27	49.72	25.55	33.8	53.4	0.821	0.807	61.82	40.14	21.68	0.0607	36.2348
5	12.04	200	5	10	5.17	76.40	50.15	26.25	32.9	52.8	0.822	0.808	62.79	40.51	22.28	0.0624	35.2482
6	12.19	200	5	07	5.12	75.60	49.95	25.65	33.8	55.0	0.821	0.806	62.09	40.27	21.82	0.0611	36.0018
7	12.35	200	5	- 26	5.43	81.94	53.90	28.04	34.5	55.5	0.821	0.806	67.26	43.44	23.82	0.0667	32,9746
8	12.53	200	5	13	5.22	77.72	51.09	26.63	34.9	54.2	0.821	0.807	63.77	41.22	22.54	0.0632	34.8374
9	1.08	200	5	- 08	5.13	75.99	50.16	25.83	35.5	55.7	0.820	0.806	62.32	40.42	21.90	0.0613	35.8622
10	1.22	200	4	- 58	4.97	73.49	48.84	24.65	36.1	55.5	0.820	0.806	60.24	39.36	20.88	0.0585	37.6157
11	1.39	200	5	- 09	5.15	76.65	50.76	25.89	36.5	56.8	0.819	0.805	62.81	40.86	21.95	0.0615	35.7891
Mean		200			5.17			26.16							22.221	0.0622	35.3889
Std Dev		0			0.1217			0.9564							0.8211	0.0023	1.2896
CV		0.0%			2.4%			3.7%							3.7%	3.7%	3.6%
%CHANGE:		Load Tonnes			Haul Time			Fuel (Lt)							Fuel (kg)	Fuel (kg)	Tonne.km
Treated-Baseline					Mins			Consumed							Consumed	Per Tonne	Per kg Fuel
Baseline		0.00%			-5.05%			-3.82%							-3.58%	-3.6%	3.7%

HAMERSLEY IRON Marandoo Site Unit Rig 4000 Series (#34) Specific Fuel Consumption Test

Graph # 2

GREENHOUSE GAS REDUCTION

A gross reduction of **5.3%** of the current estimated annual fuel consumption of 50,000 KL translates to a **7,662 tonnes per annum** reduction in CO_2 emissions, based on the formula outlined in Worksheet 1 of the "Electricity Supply Business Greenhouse Change Workbook". Our estimate is based on the following calculations:-

 $(50,000 \text{ KL x } 38.6 \text{ x } 74.9) \div 1000 = 144,557 \text{ tonnes } \text{CO}_2 \text{ per annum}$

-5.3% (47,350 KL x 38.6 x 74.9) \div 1000 = 136,895 tonnes CO₂ per annum

 CO_2 reduction by application FPC Catalyst 144,557 – 136,895 = 7,662 tonnes

CONCLUSION

These carefully controlled engineering standard test procedures conducted on a selection of Hamersley Iron Marandoo fleet provide clear evidence of average reduced fuel consumption of 5.3%.

A fuel efficiency gain of **5.3%** as measured by the Australian Standards (AS2077) CMB test method and SAE Specific Fuel Consumption method, if applied to the total fuel currently consumed by Hamersley Iron mobile equipment of approximately 50ML p.a. at a cost of \$0.48/L will result in a **net** saving of in excess of **\$1,000,000 per annum**.

Additional to the fuel economy benefits measured, is a reduction in greenhouse gas emissions of 7,662 tonnes per annum due to more complete combustion of the fuel. Further, the more complete combustion will translate to significant reduction over time in engine maintenance costs. FTC/FPC also acts as an effective biocide.